新浪科技讯 8月11日消息, 8月10-12日,世界科技创新论坛在北京会议中心举办,包括Kip Thorne、Thomas J.Sargent、Michael Levitt、朱棣文在内的20余位诺贝尔奖获得者,以及曹春晓、美国国家工程院院士陈刚等诸多中外顶级学者专家应邀出席,共同打造史无前例的中国最高级别智慧盛宴,探讨全球科技创新成果、描绘未来中国科技创新蓝图。
我们需要新的材料才能满足在航空、汽车、生物可降解方面的材料,在这些方面还没有我们有的最优的材料,所以我们现在仍然在等待这些新材料的出现,而这是一个不断演进的过程。同时有一些材料是等待着新的应用,比如CVD钻石,钻石是一个非常好的材料,是最好的热传导器,比铜是4倍,也是世界上最硬的材料,而且是透明的。它对很多的光谱都是透明的,与此同时它是非常好的一种材料。
以下是演讲全文:
今天我要讲一讲材料科学和工程学方面的挑战。如果你想要知道我们现在在材料科学和工程学方面需要什么,大家科技到英特网上去看一看,一些大的机构,他们想要去找什么。比如说我们可以去美国国防部的网站,问一下他们现在需要什么,他们会告诉你什么呢?他们想开发一个结构性的多功能的材料,想要开发能源材料和发电材料,还希望能有电子材料和光子材料,功能的有机的材料,来自于生物以及生物启发的这些材料。那么这些是他们希望在未来几年能开发出来的材料。从今天我的发言中,我会告诉大家,我们在材料科学方面取得了什么样的进展。
首先我们看看现在要花多少时间传递信息呢?以及花多少时间传输人和商品,我刚刚从以色列来,从香港转机,花很久的时间才到了北京。但如果给我一条微信信息发到我的手机上,可能只有一秒的时间。为什么这样呢?60年前和今天,1950年代的时候,超过60年前的现在,我们要传输物品、商品,从北京到巴黎,可能需要一天的时间通过飞机,而现在还是一天,没有发生什么变化。但如果你的信息想要传递,比如你寄给巴黎的一封信最起码一周的时间吧当时,而现在只有一秒钟的时间,为什么?为什么我们现在可以这么快的传输信息,而商品的传递方面几乎一百年没有什么速度上的变化,这就和物料科学有关,以及眼界和革命,或者说变革有关。我们说结构性的金属,它是一个演进,而硅的技术是一个变革和改革,这个是带来很大的改变。
我讲讲材料方面的应用,我们需要新的材料才能满足在航空、汽车、生物可降解方面的材料,在这些方面还没有我们有的最优的材料,所以我们现在仍然在等待这些新材料的出现,而这是一个不断演进的过程。
同时有一些材料是等待着新的应用,比如CVD钻石,钻石是一个非常好的材料,是最好的热传导器,比铜是4倍,也是世界上最硬的材料,而且是透明的。它对很多的光谱都是透明的,与此同时它是非常好的一种材料。几年之前我们只有天然的钻石,如果我们有大量的钻石的话,那么这是一个非常了不起的世界。真的吗?现在我们有了技术可以生产任何规模任何大小的钻石,通过CVD生产钻石。但你对此能真正利用,应用是非常少的。
还有准周期性材料,这是我的研究,它仍然是有很多很有意思的特点,在寻找这些新的应用。当然现在钻石和这些材料都有应用,但还不多。我们现在来看看这一方面的应用,比如民航,这是1950年代时候的一个飞机,差不多是70年前的一个飞机了,当时是世界上最好的机型,可以跨越大西洋(600558,股吧)的飞机,而现在我们有787的波音飞机,它做的事情和七十年前一样但速度会更快,但没有更快。当然波音可以做很多其它的功能,但和当时的机型没有太多速度的变化。
其实60年以来,我们可以看到飞机的引擎在得到改善,那么一方面更加安全,比如每一百万飞行的事故率改善了90%,所以现在是非常非常安全的,比开车还要安全。另外相对于重量的推动力改善了350%,现在的引擎是非常好的。另外燃油效率也得到45%的改善,引擎的噪音降了35db,现在变的更好了,可以看到飞机也变的更好了。飞机现在可以飞的很远很广,可以飞人飞商品,比如你在中国从任何一个城市可以飞到任何一个城市,每个人都可以飞,而且价格是比较合理的,每个人都可以做到这一点,所以飞机的通行现在是合理的价格,很多人都可以飞,很多的飞机公司都在竞争获得客户。
问题在哪里?首先我们的飞机速度还不够快,特别是和以前相比没有快太多,而且门对门的时间,其实和60年前是差不多的,当然如果你包括比如说安检时间的话,这个时间就会更长。比如你要在起飞前2~3小时就到机场,但在以前可能你并不需要前3个小时就到达机场,所以门对门的时间并没有太多的改善,要解决这个问题需要更好的高温材料,可以进入到飞机的引擎当中非常热的部分,这样的话飞机可以飞得更快。
这种材料演进的机会是不错的,也许我们可以最终通过演进到达那边,但是这个革命的可能性是非常少的,我们预计在这样一个材料科学方面不会出现革命性的变革。我们看一下对于新材料的开发、运用与现有的应用是非常长的,而且需要花很多的精力,找到正确的合金应用是第一步。找到这个材料只是刚刚开始而已,整个流程可能会花很长时间,而处理一个新的合金是下一步,而且这需要很多的努力,包括智商上和财力上,这样的流程可能会花很多年的时间。
比如说,钛化铝是钛和铝的化合物,三铝化钛和铝化钛,这可能是有用的材料,我也做了很多年前的博士研究,是七十年代的时候。我当时就研究了这些材料变形的过程,我们去了解这些材料,也知道它们的组成。
我们从50年代的时候就知道材料的组成了,我们知道铝化钛加上其它一些材料,我们就可以组成一个比较好的材料,我们从50年代的时候就知道了这一点。但一个引擎公司拿了一个新材料来开发这种材料,大家想想发生了什么,要把它放到飞机的引擎当中。过了几年之后,整整过了40年的工艺流程,我们找这个材料很快就找到了,但是它的处理流程、工艺流程花了40年,而这家公司是一家非常强的公司,非常有能力的公司。那么这样一个产品开发的过程,就是我所说的汽油车到电车、动车。特斯拉已经走到前沿,日本、韩国、德国也在开发这些车,但到现在为止我们还没有一个完美的电池,为什么是电池呢?这是福特的T型汽车。
这个车能做的事情现在的车还做不了呢?因为当时路不好,所以福特车在车况非常不好的时候设计的,这个车底盘非常高,路况很不好的时候可以开。但现在的车,路况很好,所以我们看特斯拉的车底盘是非常低的,这些车在以前的路上是开不了的,只有T型车才能开。电池这一块,我就跳过了,直接讲一讲生物可降解的假体植入物。
我们都知道有一些人有心脏的问题,他其实有很好的解决方案,不需要做开胸手术,才能解决血管栓塞的问题,可以放一个假体进去,飞机短的时间病人就能醒过来,没有什么伤害。把这个假体放进去,撑开,血管栓塞就解决了。但血管会收缩、扩张,每一次心动的时候都会这样,但支架不会这样做,所以它可能会有一个慢性的问题,如果你有一个生物可降解的假体就可以解决这个问题。比如血管栓塞解决之后,这个支架就会消失,会降解,不再会有任何的参与,所以不会有慢性病留下来。很多情况下这种假体最好是生物可讲解的。
现在使用最好的材料就是不锈钢,但这种材料现在却不是生物可降解的,如果使用生物可降解材料的话,要么是使用镁铝,为什么镁铝不好用呢?因为溶解的速度不够,聚合物不好用是因为强度不够,所以现在没有什么好的解决方案,在支架上仍然寻找更好的材质,让它实现生物讲解性。
材料方面有什么趋势呢?前面我谈到钻石,也谈到CVD钻石,今天因为时间有限没有办法给大家介绍俄罗斯的科学家大卫的研究成果,他可以说在科学家引起了一场风暴,他在50年代发明了,有一天说可以从气态状态中生成钻石,其实说的没错,现在可以通过CVD可以来生产钻石,任何的量都可以生产出来。
下面我们来谈一谈准周期材料,准周期材料有着特殊的特性,比如在导电性、绝缘绝热方面,低温下面,它的导电性会降低,它有很多我们现在具体的材料中的应用,下面我想给大家讲一个我想要给大家聊一聊的话题。
青铜时代,大概公元前1200年,人类就发现了铁,开始使用铁。但是铁和当时的这种青铜相比,强度不够,所以几千年以来即使铁发明出来了,人们也更愿意使用青铜。直到公元前8世纪发现在铁里面加入少量碳,就会形成钢,钢这种材料是非常非常好的。直到今天我们在建筑领域大量使用钢材,过去很多汽车也是使用这种钢材的,现在很多都是使用塑料材质了,但在建筑行业在工厂里面,使用很多的材质就是钢。可以说钢是现在使用的非常重要的一种金属,还有是合金。一开始铝发明出来的成本比制作黄金还要高,但后来找到一种办法可以从矿石中制作合金,成本大降低,所以铝大幅度应用。
后来NASA想要发射一个航天器向太阳进军,因为太阳温度非常非常高,靠太阳越近温度越高,如果今天走到室外的话发现温度很热,如果离太阳越近的话这个温度会越来越高。NASA这个航天器究竟能离太阳多近呢?最高的温度是1370度,这个问题已经非常高了。但如果这样的温度下如何保证航天器受到保护不受影响呢?这里面需要使用碳这个合成物,外面有石墨烯的板,这个是目前使用最好的材料,可以绝热,可以保持内部温度30度左右,保证航天器内部正常运作,而外面涂成白色来反射辐射而不要吸收辐射。
航天业的革命是由莱特兄弟发起的,1903年莱特兄弟试飞第一架飞机,当时的引擎就是使用铝,生产铝的这家公司直到今天仍然非常成功。里面加入80%的铜,但他们当时不知道为什么这么好,当然我们现在知道了。当时知道这种铝铜的合金特别适合做飞机的引擎,现在很多汽车的引擎也是使用这种合金。
现在可以使用金属的3D打印了,我们叫金属的增材制造,但是增材制造现在所生产的这个产品还不够好,速度还不够快,成本还不够低。但是我们已经看到了这样一个趋势,我们现在正在经历这种渐渐的变革,我们已经看到了这个隧道尽头的曙光。
另外一种加工工艺是叫挤出工艺,通过这种挤出工艺你可以生产出更加精细的这种金属材料,让它获得更加优异的性能。
最后,在今天的技术中,最大的一个限制就是材料技术方面的的缺乏,我们祈祷着在材料学中也能起到所谓的革命,而不是渐进式的缓慢发展。谢谢大家。
刘科:非常感谢精彩的演讲,关于材料方面的。下面我们请下一位诺贝尔奖F.Duncan M.Haldane,他毕业于剑桥大学,1978年获得博士学位,他的博士导师安德森也是一个诺贝尔奖获得者,他之前在法国的一个研究所,南加大贝尔实验室和UC工作,从1990年开始,从普林斯顿一直做物理,于2016年获得诺贝尔物理奖,刚才跟他聊天的时候,有几位凝聚态物理,我们中国的温小刚也做这个,我们大家也可以关注一下。现在我们欢迎F.Duncan M.Haldane。
F.Duncan M.Haldane:非常感谢邀请。前面F.Duncan M.Haldane已经谈到了材料学的具体的应用,下面我想谈一谈理论方面的话题。我所介绍的就是量子力学中的玩具模型。这种玩具模型和真实的材料其实是有很多的联系的。那材料科学家可以通过这种玩具模型来开发出新的材料,让这个材料具备独特的量子特性。
量子力学其实是一个老学科,有着90年的历史了。量子力学的原理在1932年基本上完成了,到今天基础原理没有发生太多的变化,量子力学的原理都经过验证证明是正确的,但是既然知道量子力学的原理,也不意味着我们了解量子力学的所有现象。比如说麦克斯威尔在1864年完成了电磁力学的公式,但是电磁的应用在多年之后才问世。
比如说过去几十年,我们知道有一些光镁的晶体就使用了这种电磁定律。当时英国的首相格拉斯顿问说:你发明了这个有什么作用?麦克斯威尔说:我也不知道,但是未来可以通过电磁定律给政府带来税收。在80年代我们对量子力学有着越来越多新的了解,尤其是对凝聚物物有了越来越多更深的了解。我们发现一些凝聚物的具备,我们之前没有预料到的拓扑态,这是很多人没有想到的。因为当时认为有了充分的理解,但是发现有一些意想不到的事情出现。
之前50年代由费曼研究量子信息理论,之后有一些不同的动态的差异,包括凝聚物质、原子、物理学等等都影响到了量子力学,所以很多人说在量子力学面临第二场革命。我们现在有能力对物质的量子态进行精密的控制和调整。这样一来也可以让我们开发出新的处理信息技术。我对于这表述还是有一点点怀疑,因为我们不知道未来量子方面的进展有多快,因为现在仍然没有真正制作出运用量子力学的这种高级的设备。
我想讲的一个关键的要素就是随着量子力学的深入了解,新的材料将给我们带来新的可能性。我们也会在这样一个基础上产生新的技术。在这个过程中肯定会出现意想不到的研究结果出现。一般来说,我们讲到bit要么就是开要么就是关,你也可以把它当成大量的自旋,要么是向上要么是向下,但是量子信息对于信息的状态不一样。一个自旋的我们叫做q-bit,是可以在部落后球面中指向任何一个方向。不像传统的只有开和关、上和下,这是量子力学的信息储存的基础理论完全不同。
一个关键的原理是叫做量子纠缠。20年前凝聚物质学家还没有开始研究缠绕问题,爱因斯坦也说在量子力学可能会出现这种纠缠现象,但是现在随着对于量子纠缠越来越多的了解,未来量子计算它将扮演一个重要的作用。爱因斯坦讲到量子力学的时候,他觉得这样一种理论,纠缠理论太疯狂了,那当然了,爱因斯坦是因为这个效应获得诺贝尔奖的,但是到1935年的时候,他对量子理论持反对意见,他说量子的纠缠太奇怪的。薛定谔给出一个定义叫量子纠缠,通过这个概念来描述粒子之间的关系。量子力学的基本原理是泡力不对等原理,两个量子力学不可能在一个同一个状态下。我们知道电子状态取决于旋转的方向,电子之间的化学件是由两个电子组成的,而且是反向旋转。所以可以占据同一个空间,只有这样才能形成所谓的化学件。这个化学件也就是这个电子之间量子缠绕的一个基础。
爱因斯坦就觉得有着这种化学件的时候会有量子纠缠,但是随着电子距离越来越远,那可能是不会出现这种所谓的纠缠。他觉得这违反了基础的一些原理。但是在爱因斯坦提出这个问题之后,另外一个学者,他当时和爱因斯坦进行了很多合作,他找到了《纽约时报》把爱因斯坦的言论发表出来,说爱因斯坦他不认可这个量子力学,当然爱因斯坦对这篇文章非常愤怒,觉得不应该把私事爆出来,但是不管怎么样,在1935年的时候确实是一个轰动性的事件。
这里面提出来EPZ(音),爱因斯坦觉得这个不符合广义相对论,但是后面的学者做了深入的研究,在80年代,由法国的科学家Aspect做了这样一个研究,发现EPZ完全符合所推导出来的理论。距离越远,这样的化学件越脆弱。当然,光子也有不同的偏正态。它就是阿斯配使用偏正态做实验,两个不同偏正态的光子来研究他们两个的纠缠状态。后来,去年在中科大的这个潘建伟教授也在卫星上实现了量子信息的传输。EPA就表明量子力学没有错误,量子缠绕是存在的,但是八十年代凝聚物的科学家对基础的性质和电磁认为应该表示了解,但是没有涉及到量子纠缠。但是后来这个时刻他们发现凝聚物有两个独特的特性,一个就是量子霍尔效应,这个是由盖乐森所发现的,当时我没有意识到他跟我研究的一个联系。我是发现的这种拓扑的量子态。
在一开始的研究之后,我们发现其实我们研究的这两个独特的性质,其实都是遵循同样的原理的。在过去十几年我们找到了很多的拓扑态的量子物质,这里面的关键就是量子纠缠导致了一些物质表现出独特的拓扑性质。
什么是拓扑物质?它和传统物质不同,因为首先它有着这种纠缠的特性,而且由整数进行描述。一般普通的物质,它只是由1和0这些数字来描述,而量子态的物质是由其他的这种独特的整数来描述的。比如说如果有一个物质的一个状态可以用-2来表示,而传统的物质用0表示,两者之间存在一个边界。也就是说从传统物质会转化成拓扑物质,中间有一个界限。
我们发现了一定的自由状态,往往它是在正常和拓扑物质的边界出现。在1980年之前,人们在研究材料的时候,发现边缘没有什么特殊,但是如果是拓扑物质的话,它是没有破裂的对称的,它的内部跟外部没有明显的差别。但是,我们认为拓扑物质跟普通物质之间是有边缘的。材料的拓扑状态不能持续改变,正是这个特点,使得拓扑物质对于杂质有很强的这个鲁棒性。这个跟一般的物质性质不一样,比如说硅片的生产要在非常干净的净室内生产,因为灰尘会破坏硅片,可是拓扑物质不怕,至少灰尘量不是太大的灰尘。
在数学里面,我们把接近表面的时候对它看,它的这个洞的数量比如说,比如说足球,你可以拉扁成美国足球或者是橄榄球,没有改变拓扑性质,但是改变了形状,中间碰一个洞,这时候实行很多的力才能改变。所以有一个阈值,另外我们说拓扑状态下是一个整数,不是一个持续的变化。
高斯伟大的数学发现,他做出来一个非常重要的数学发现。高斯理论,邦耐特帮他写下来后来被证明了,这是一个高中数学的例子。一个球面,我们知道球面的面积是4π的平方,把它的曲率球面结合在一起,得出这样一个等式。但是高斯和邦耐特,对任何一个形状,只要是不破洞,这个答案还是正确的,不一定非得是非常标准的球。但是如果穿了一个洞,它就不一样了。所以我们最开始研究拓扑物质的时候,特别喜欢用咖啡杯来做比较,就是咖啡杯和我们从球变成甜甜圈,到最后的咸饼干,一个咖啡杯没有把,到有一个把的咖啡杯,到有两个把再到怎么样。而真正的像有三个洞的德国的咸饼干,我不知道能不能打这个比方,有三个把的杯子,就叫做“加州友爱杯”,这当然是开玩笑了。这个比方变得更精确了,这里要感谢陈省身数学家,他将高斯博内公式进一步归纳,允许它可以用来解决量子问题。
我们说哪一个数学奖相当于物理学、化学这种诺贝尔奖呢?有人说是菲尔兹奖,也有人说是CHEN奖,相当于是数学界的诺贝尔奖。近年来我们意识到量子凝聚态具备了一些奇异的性质,能和远距离的量体缠绕有关。这里我们把简单的缠绕,把它一拆为二拆成两个部分。我在做完一边的测量时候不会影响另一边的样本的自由度。我们把这些非简单缠绕的材料,会发现它们有一个边缘状态,如果一切为二,首先系统会经历缠绕,那么它的边缘状态是存在的。因为你首先要终结它的缠绕状态。就像你要把北极跟南极分开是一样的,把量子态的物质一分为二的时候,那么这时候往往会终结它们之间的纠缠。
我们知道,在拓扑上非简单的状态的物质,它可以通过把原子放在一起组装起来,那么整个过程中,它的电子都是直间连状态,我们在组装的时候,电子是相互间连的,距离非常远的电子和聚在一起的电子之间发生变化的时候需要施加外力。这时候要跟原子状态的这个性质有关。
我们回顾历史来看一些早的计算,这拓扑绝缘体的表现。这跟肖克力1939年的计算有关,这也一种意为的固态,看这张图。这里有一个间连的状态,将原子聚在一起,它会有一个合在一起跟分开之间的边缘状态。如果电子的数量和我一开始组装起来的数量是一样的,那么它会在这两种状态中间,那么它只能是多一个电子或者是少一个电子,你会发现一半地电子在一侧,另一半的电子在另一侧,这也是我们讲的局部分解化的一个特征。
到了1981年,我开始研究磁力。我遇到了很奇怪的状态,这个状态和一般我们讲的磁性的研究非常不一致。一般来说,我们说自旋,如果是有磁性的话,那它一般是对称的。那么在一维的情况下是不可能的,但是人们以为局部是可能的。但是事实上如果你有一个整数自旋,如果是它们就像是这个实现了缠绕,每一个电子是它自旋一半。在链的边缘有一个剩余。当时我是很吃惊的,因为我是从新视角看这个问题。用新视角看问题能带来新的发现,虽然熟悉的现象,但是要用不同视角看待它。
从这个角度来说,传统的这种磁性告诉我应该得出一个结论,但是实际上我观察到的不是这样,一下子我们重新检验我们的传统智慧。有一些时候人们会习以为常,你习以为常的东西是错误的,或者是错误的解决了原有的模型。当时我们重新去检视了很多已有的模型的解读。当年还有不少人因为我的研究而感到沮丧。我们说理论学家的理论之争最后都会得到材料的检验,实践学家也喜欢用实践证明谁是对的谁是错的。所以我们做了一些样本模拟理论的问题。
人们设置了一个有机链,当实验结果证明了这一点,对我来说是好的,证明我是对的,这种理论之争才有意思。当时引起了很多人的兴趣,所以一下子产生了一个非常有趣的研究学派。
打的比方相当于一群人是缠绕的,就相当于人们都是手牵着手,你会发现在边缘总有人的手是空着的,两个边缘都有人的一只手是空的。我因为这个得奖了。我时间不多了,再后面讲讲其他有趣的研究。
那量子霍尔效应也是有关拓扑的有趣研究,我们知道它是拓扑性质的,但是我们认为边缘的状态是证明它处于拓扑状态的关键。那么这里跟我一起得诺贝尔奖的人是一个数学家,找到了非常棒的数学公式,能用这个数学公式来解释它的曲率。他也验证了前面讲的高斯定律。我们以前觉得量子霍尔效应是不存在磁性的,但是通过玩具的石墨烯的模型,我们发现1988年提出的这个玩具模型当时花了好多年才成熟,我们看到了它出现了拓扑绝缘材料,我们想这是一个具备磁性的拓扑绝缘材料。在北京,当然不是北京大学,是清华大学在没有磁场的情况下,仍旧具备非常漂亮的边缘状态,现在可以把超导体放在上面,因为不存在磁场,它有很多应用的前景。这里打一个比方,一个方向的高速公路怎么样去管理它,分成几个车道,一个走这个方向,一个走另一个方向。这个系统是很有意思的。
最后是量子计算了。最早,它是一个最初的版本,是由两个教授来计算说用于量子计算,这里的信息是存储在纠缠状态中,所以量子计算这个拓扑量子计算可以发生在纠缠中,可以在纠缠中去处理。我们说信息可以藏在非局部的地方,我们来看量子比特,如果说它们的距离非常远,这样的话就可以不受局部的影响,我时间差不多了,要结束了。
可以在它们的纠缠状态下存储信息,这个跟量子计算有关,而且现在微软公司愿意花巨资开发这个平台,一维的拓扑的超导材料,现在也在开发2D平台,但是目前还没有突破。其实背后的理论已经准备好了,那么今天我们说微软的项目它背后还是我们讲的玩具模型,它具备的特性跟我们讲的自旋链模型是类似的。这时候还有一个费米子,电荷被超导给拿走了有两个半个的费米子,在模型中可以把它和超导体结合,它们可以重新跟邻居握手。
刚才我跟大家介绍的就是微软在做的一些实验,我们有其他很多不同方法来使用量子信息学的理论来做出一些立方体。我们都不知道最后出来的技术是怎么样的,但是因为有那么多人,那么多的钱投资在那边,所以我们会看到有各种各样的新的开发现在正在进行当中。我不知道最终回出来什么,但是我现在越来越有信心,我们会有非常有意思的东西学到,可能会有第二次的一次新的技术出来。
最后给到大家的信息就是这些信息它其实是来自于三个最基本的要素,一个是玩具模型,就是把非现实的但是可以计算的玩具模型,其实非常关键,帮助我们发现很多的这样一些效应。在这个之后是一些数学的原理,包括CHNE的原则,对数学家来讲,不知道物理学方面的玩具模型,是一个非常深的数学原理。最后一个是最先进的一些物料科学,材料科学,把玩具模型变成现实。最后我们讲的刚才的这些东西,它其实是之前完全没有预测到的,所以我给这边的研究生或者是相关的研究人员一条信息,就是你真的是一个非常聪明的人,但是有的时候不一定有足够的运气碰到一些的新的技术发现。所以,我觉得在任何做基础研发的人,都是有潜力的,是可以获得诺贝尔奖的,因为你可以是,也许你这个怎么说呢?就像你走路的时候不听踢小石子的,总有一天会踢到钻石,但是不逆向下看会错过,有运气的时候会加上一些准备,但是你有想法的时候会遭受一些质疑,这是我给大家的一个承诺。谢谢!
刘科:下面我们进入对话环节,我请四位嘉宾上台,找到你们的位子。中国科学院大学的副校长和汉德工业促进资本主席蔡洪平先生来介绍一下。下面环节请中方的两位嘉宾每人先花5-8分钟时间作个简单介绍,然后大家来问问题。
先介绍一下中方的嘉宾,苏刚教授是中国科学院大学的副校长,物理学特聘教授,国家杰出青年基金的获得者,获得学位以后先后在纽约、日本等大学从事工作,也是凝聚态物理方面的,中国很多学者做了很多这方面的工作,这块是中国跟世界接轨比较近的地方。
另外我们请来了多年在华尔街帮中国民企和国企上市的蔡洪平先生,蔡先生也是中国在金融界很知名,刚才我们聊的时候有很多共同的朋友,李山、张宏利(音)、汪潮涌等等,有些甚至都是他的部下,帮助很多的民企,包括好朋友的公司,凤凰网刘闯他们上市都是在华尔街德意志银行时候一起做的,很高兴蔡先生今天跟大家一起分享。
首先请苏刚教授,中国科学院大学的副校长跟大家分享5-8分钟时间。
苏刚:谢谢,因为刚才两位诺贝尔奖讲的跟材料都有关系,第一位的Dan Shechtman:教授讲的是种金获得的诺贝尔化学奖,是非常重要的发现。第二位获得者F.Duncan M.Haldane教授是讲的拓扑材料,从凝聚态物理尤其是量子物理隐身发展的,现在拓扑材料对未来的量子计算,尤其是拓扑量子计算有很重要的应用。
我们这个部分的主题是新材料先进制造的新引擎,我的发言主题是说因为先进制造需要材料,材料从哪来?新材料从哪找到?所以这是一个非常艰巨的任务。我的发言的主题是说新材料从经验探索到可预测的设计。
大家知道,材料是构建我们社会发展的物质基础,从最初的从天然材料的远古时代,到后来用火,制造青铜器和铁器的时代,我们有了很多的文明,再逐步利用物理、化学的原理人工制造材料,到了工业革命时期,这里面高分子材料和复合材料等等,再到今天的信息时代和大数据时代,这样的话在这个时代人类可以利用先进的计算机技术,结合量子力学的原理计算、设计、预测材料的性能,这些都表明人类社会的发展时期往往是以材料的发展为标志的,可以说人类社会的发展史就是材料的发展史,材料是制造的基础,先进制造更要充分利用性能优异的新材料才能够实现。另一方面,才能的合成和应用也是推进科学技术迅速发展的主要原因,新材料的开发对推动新材料的制造、科技发展乃至人类文明进程都是至关重要的。
说到新材料的研发,常规的材料研发大多是通过知觉或者是经验的探索,或者是偶然的因素实现的,无论是从天然材料的提纯到合成材料,还是从单一材料到复合材料,人们经验从中起到很重要的作用。新材料从最初发展到最终大规模应用需要10-20年,甚至更长的时间。刚才Dan Shechtman教授也讲到铁里面加了碳,还有铝里面加了铜,运用到工业时间很长。如何适应人们不断增长的物质和精神的需要,要缩短新材料的研发周期,我们能够很快速的把新材料找到,而且降低费用,这就是本世纪材料科学家面临的巨大挑战。但是幸运的是,我们信息的技术和计算机的发展使得这种探索是可能的,人们可以通过计算机的模拟来实现材料的研发路径,从经验型的探索到可设计、可预测的方向发展。这里面有个很重要的例子,2011年6月份,奥巴马总统提出来一个材料基因组的计划,这个计划实际上是为了将能源、交通和安全的材料等领域先进材料的研发时间和研发费用减半,基本的思路是这样的,材料基因组工程的思路是这样的,通过开发快速可靠的计算方法和计算程序,基于元素的基本性质,从元素周期表找几个元素,按照基本性质以及物质结构和承建理论,按照高性能计算机设计模拟和预测相关材料的化学性质,获得预测材料各种参数,然后再开发高通量的实验方法快速的对理论预测进行验证,这样可以构建庞大的数据库,从而大大缩短新材料的研发周期,从而极大降低新材料的研发费用,因为不需要盲人摸象了。
这种新材料的研发模式,尤其是在新药创制和新能源等等领域发挥非常重要的作用。由于这样的计划,世界各国都在积极的做,中国也做了很多的项目和工程。最近几年使得计算材料科学的发展方兴未艾,从新材料的结构设计与预测,计算方法与计算程序的方法,特别是机器学习和人工智能技术的材料搜索方法,到实际材料的合成及表征的验证,以及建立与大数据的共享等等,这些都为新材料的筛选和研发奠定必要的理论基础。现在大家从网上看到很多材料的库,包括中国有很多新材料的库,使新材料的研发从经验的探索到可设计、可预测的方向发展。
这里要强调一点,理论设计和预测都是在理想的条件下,基于物理与化学原理,经过大规模预算得到的。设计材料也是这样的一个方式,理论设计可能跟实验制造在参数和性能上也许存在一定的差距,这样的探索是值得的,是为前期海量的可能性中快速筛选出合适的,少数的材料指出了方向,哪些结构是可以的,可以去试,哪些结构不可以,你不用去试了,这样大大缩短了新材料的探索周期,降低了费用。所以我们可以大胆的设想一下,在未来新材料的研发和工业制造,能够根据人们进行的需要的性能,就跟餐馆点菜一样,根据性能进行材料和器件的一体化设计,再加上快速发展的3D打印技术,直接从材料设计到一次性成型,把所需要的器件打印出来、制造出来,这个可能是未来先进制造的方向。我的发言就到这里,谢谢。
刘科:下面请蔡洪平先生从资本的角度谈新材料相关的话题。
蔡洪平:非常同意苏刚校长的观点,人类的文明史就是新材料的进化史,从旧石器时代、新石器时代、青铜器等等,下一个时代是什么?很多说法都有,我认为这个时代是对的。
我有两个问题,我们作为一个投资人、商人,我们看到两大问题怎么解决,这是大家需要讨论的。新材料是推动人类文明和当代科技进步很重要的东西。两个问题,一个问题是我们在投的过程中,凡是我们想投一些新的材料公司,我想我要不要跟科学家走,我永远要听他们说什么,但是我真的不愿意投什么,因为这个是一个长期的过程。举个例子,很多例子可以说明,现在半导体材料的硅,现在形成的砷化钾等等,这个是新的有前景的东西,投进去需要十年甚至二十年,远远超过我们的投资周期,我们从投资角度时间的有效性和技术材料研发和商业化的长时间是不成正比的,这是第一个很大的瓶颈。
第二个很大的新材料,我再举个例子,现在无人驾驶车,我去年还大胆在旧金山坐了一次无人驾驶车,上了101高速,开到80迈的速度,停下来一看根本没法用,这就是人工智能,后来开玩笑说人工智能听他们说可以,讲故事可以,一旦投资一定死的,这是我们从商业角度。但是这样对科学家不公道,他们做了很多贡献,那个车开完以后,上面雷达扫射,下面芯片处理,后面已经烫的不行,三分之一的电都被计算烧掉了,先不说多贵,有科学家告诉我他们正在做14纳米的芯片,可是14纳米的芯片做出来以后,谁帮你留片,排留片要排半年以上,而且这么小的规模可能也不够,为什么帮助四你做留片,甚至真的要跑上动态的,在160多个无人驾驶的场景下,计算各种不同场景的结果和算法出来,14纳米都不够。后来有几个科学家很好,发明了扫射的时候固定的楼房和树不需要扫,只是动态的物件,对车发生危险的扫射一下,所以变成了小雷达。但是这些都需要新材料的跟进,都需要芯片。所以我看比如说芯片14纳米、7纳米,但是真的投进去看不到边界,这是我们蛮苦恼的事情。
第二个是是一个法律瓶颈,怎么样能够从商业化推动新材料的应用,这是我们对科学家唯一做的事情,否则很多科学家出来的东西,很多诺贝尔奖获得者跟我说过去很多新科技没有被应用就淘汰了,没有被验证的东西可能没有生命力,最后的效果是要检验你对社会的贡献和应用的可能性,这个问题是要解题的。
第二个题,有些科技理论出来以后,最后计算瓶颈没法解决,怎么样做生产就是一个问题,现在说到14纳米,我看光科技都要做很大的调整,有的几乎超出人的极限,我在德国看了一个做半导体光科设备的一家企业,它几乎就是在这种想象力,比如说多少微米的,最后怎么做成功产品,里面最要命的两个问题是,一个是稳定性,还有一个是合格率。这个稳定性不解决、合格率不解决,没有一个商人会用你的。我们看到中国有些人做(英),日本有人做了很多年,有两个老板,一个死掉了,一个癌症。我的家庭是做化纤的,碳化过程中的均衡度,96%的合格率,这家江苏的企业做出来了,800T也做出来了,700T也做出来了,1000T也做出来了,合格率只由60%。所以那个老板在三年前见我的时候说不敢晚上去卫生间,12点以后去了卫生间就睡不着觉,他已经投了几十亿元进去。
中国对新材料的研发有三大问题需要解决,第一个是合格率需要解决,这个跟设备有关,跟IP有关。第二个是可靠性要解决,精度要解决。我们现在看到的国内以前,不是现在,报纸上经常充斥着院士们经常吹牛逼,报喜,厉害了我的国,在材料上根本没有解决这些问题,我看了蛮痛心的,很着急的,他们通常把一个论文以为就是技术,他们把中科院评院士当成待遇,后来很多人跟我说当了院士以后没有成果了,我不相信这句话,但是确实是这样。材料这块在中国的应用上面,特别是在中国,还有很多的路要走。
两周前我看了深圳和宁波的科技企业,我发现今天为止所有的装备都是进口的,比亚迪(002594,股吧)是在16年前一手帮的忙上市的,我当时很感受的,当时进入半自动化生产线做出了电池,电池是做锂电池,我们伴生的生产线可以做这样的电池很不错,但是在一个月前我参观的时候傻掉了,这么好强的企业家最后电池生产线全是智能化的,没有工人,他最后设备是1000多万美元,没有一家是中国的,这么好强的十多年前电池革命的人,今天做电池的他要做811,电池密度很重要,要到280以上,甚至到300以上,最后已经不是人可以操作的,一定要有设备。有了设备以后再往上走,到300以上,我们设备哪里来?我们设备技术跟上也是很大的瓶颈。
两大技术,一个是技术要跟进,装备要跟进。这两个不跟进,另外一个最大的问题就是再好的东西拿来以后,我投了德国的做汽车轻量化的材料,45秒钟到50秒钟一个零部件就出来,分量比铝还要轻,可是王传福就跟我说的很清楚,蔡总,没问题,但是我希望你轻一公斤的质量不能增加我30块钱,这个砍就很麻烦,现在车2.5吨是不够的,电池一吨不能降材料,以后可能以后会降,重量1.5吨,所以要把钢铁产品变成化工产品,化工产品要求非常高,这样的话里面材料的要求也非常高,这里面问题来了,用了材料以后,一公斤两千人民币真的不敢用。所以我们一起思考和一起努力,来解决推广过程中的问题,怎么去克服。